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DEFECT CORRECTION 
FOR TWO-POINT BOUNDARY VALUE PROBLEMS 

ON NONEQUIDISTANT MESHES 

J. C. BUTCHER, J. R. CASH, G. MOORE, AND R. D. RUSSELL 

ABSTRACT. New finite difference formulae of arbitrary order are derived for 
the special class of second-order two-point boundary value problems y" = 

f(x, y(x)), a < x < b. Variable mesh spacing is possible, and the required 
accuracy is achieved under a very mild mesh condition. A natural defect cor- 
rection framework is set up to compute the higher-order approximations. 

1. INTRODUCTION 

In this paper we develop high-order finite difference formulae for solving the 
second-order two-point boundary value problem (TPBVP) 

(1.1) .y"(x) = f(x, y(x)), g(y(a), y(b)) = O, y: [a, b] . NR 

For the corresponding initial value problem 

(1.2) Y" (x) = f(x, y(x)), y(O) = yo y'(O) =Yo <X<XF, 

the most widely used numerical technique is to convert it to an 'equivalent' 
first-order system 

(1.3) y'(x) = f(x, y(x)), y(O) = yo 

and then to use a standard software package. The conversion of (1.2) to (1.3) 
is appropriate for initial value problems first because storage is not normally a 
crucial factor, and so an increase 'in the dimension of the system is not a serious 
consideration, and second because the first derivative of y is needed from the 
beginning in order to advance the solution from step to step. However, for 
the TPBVP (1.1) the situation is quite different. If the solution is computed 
numerically, the storage space can become a major consideration. Treatment 
of the high-order equation directly, rather than conversion to the corresponding 
first-order system, can be considerably more efficient, e.g., as evidenced by the 
success of the collocation code COLSYS [2] for solving TPBVPs. Thus, it is 
natural to derive numerical methods tailored to this special form. 

A major motivation for developing methods for second-order TPBVPs is 
that such problems arise when applying a method of lines procedure for solving 
hyperbolic and parabolic partial differential equations in one space variable, or 
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elliptic equations in two space variables. In such contexts the development of 
efficient numerical methods on variable meshes is very important. A number of 
steps in this direction have been made, e.g., see Skeel and Berzins [27], where a 
finite element method is given, which is adapted for TPBVPs with an additional 
singularity arising by applying cylindrical or spherical symmetry to the PDE. 
While an eventual goal would be to extend our approach to handle general 
second-order TPBVPs for which y'(x) appears explicitly, the form (1.1) does 
arise naturally, e.g., from discretizing first-order evolution equations Au/&t + 
Au = F(u) in time t, where Au _ 2u/x2 and F(u) is a nonlinearity in u 
(and not ux), as for certain reaction-diffusion equations (see Jolly [18]) or for 
the complex Ginsburg-Landau equation [15]. 

Many approaches to solving (1.1) have appeared, viz. [7, 12, 13, 14, 17, 23], 
which are in some way connected to the approach here. However, many of 
these schemes are based on a uniform mesh, while an important property of 
the schemes we describe is that a variable mesh is allowed. Perhaps the sim- 
plest scheme for the solution of (1. 1) would be to replace the derivative term in 
(1.1) by an appropriate finite difference approximation. Manteuffel and White 
[23] have recently analyzed this approach and have shown that centered dif- 
ference schemes give second-order convergence even on nonuniform meshes. 
This important result has a bearing on the schemes we will derive in that we 
develop efficient high-order methods which appear to retain the high order of 
convergence for variable mesh spacing. Some high-order methods for the so- 
lution of (1.1) have been developed by Daniel and Martin [14]. They used a 
finite difference approach based on Numerov's method and increased the order 
of the basic method using iterated deferred corrections. Their approach can be 
regarded as an extension of Pereyra's method for first-order two-point boundary 
value problems [21, 22, 25] to the special second-order system (1.1). One of the 
present authors has recently proposed a different deferred correction approach 
to the solution of first-order systems of TPBVP [5, 6], based on mono-implicit 
Runge-Kutta formulae [9, 10]. Theoretical and numerical results indicate that 
this new approach is competitive with existing methods. 

In what follows, we extend this basic approach to the special TPBVP (1.1). 
We again apply a deferred correction approach, using a natural generalization of 
mono-implicit Runge-Kutta formulae to second-order equations [8]. A change 
in methodology is introduced, however, since we adopt a Galerkin viewpoint as 
suggested in [3, 24]. Hence, we give a novel derivation of high-order finite dif- 
ference methods, for nonuniform meshes, which is extremely natural and easy 
to understand. These high-order methods are developed using defect correction, 
which provides a very efficient way to solve the equations. The orders of conver- 
gence for the methods are shown using supraconvergence arguments. This term 
was introduced in [20, 23] and means that, under a mild mesh condition (cf. 
(2.8)), the truncation error is higher-order on average than pointwise. Hence, 
there is a strong connection with the idea of superconvergence in Galerkin/finite 
element methods. 

In ?2 we explain our underlying conditions on problem (1.1), and for nota- 
tional simplicity we look at a single equation. Also, as discussed herein, ho- 
mogeneous Dirichlet boundary conditions are assumed. Our basic framework 
for developing methods of arbitrary order is then presented and second/fourth- 
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order approximations derived, the latter requiring a fundamental mesh condi- 
tion necessary to exploit the supraconvergence phenomenon. In ?3 the fourth- 
order accuracy is obtained by defect correction. Higher-order methods require 
extra function approximations to be obtained, and ?4 explains how these can 
be generated, the supraconvergence again being crucial. In ?5 the higher-order 
accuracy is achieved by defect correction. Finally, possible variations and gen- 
eralizations within our defect correction framework are mentioned in ?6, and 
?7 contains numerical results illustrating the orders of accuracy achieved. 

2. THE DIFFERENTIAL EQUATION AND ITS APPROXIMATION 

We consider the problem 

(2.1) Y"(x) = f(x, y(x)), a < x < b, 
with boundary conditions y(a) = y(b) = 0 and assume there exists a solution 
Y* E C2[a, b] . Later in this paper, y* will be assumed to have more smoothness 
as required. As for the function f(x, y), we assume once and for all that there 
exist constants a and 3 > 0 such that Vx E [a, b] 

(2.2) Ig(x, u) - g(x, v)I < alu - VI 
if Iu-y*(x)l <3 and Iv-y*(x)l <3,where g isanyof f,&f/ax,af/ay, 
D2f/8X2, 092fl/9xay, and C 2fl/0y2. Finally, it is also assumed that the solu- 
tion y* is isolated, i.e., the linear problem 

(2.3) -Y"(x) + q*(x)y(x) = w(x), y(a) = y(b) = 0, 

where q*(x) -Of(x, y*(x))/Oy, has a unique solution z E C2[a, b] for each 
w e C[a, b], and there exists K > 0 independent of w such that 

rx 
max{jZ'(X)/}K max w(t) dt. 

xE[a, b] xE[a b]|j ( ) 

We shall see later why it is appropriate to consider stability in this fashion. 
The solution y* will be approximated by a mesh function in the following 

way. Consider a mesh on I - [a, b], i.e., 

a=xo <Xi < . < XN1 < XN =b, 

and introduce the notation 

Ij_ = [xy_l, xj], Ij =Ij_ u Ij+1, h.j_1=_Xj -xj_1, 

h= hj +hj+j h.+ h1j+j and h =- max{h.-i} 
2 Oi h + 

Define the basis functions {q'j} according to 

((x-xj_.)/hj_+, xeIj_, 

(oj(x) _=t (Xj+I-X)Ihj+i , x eIj+j , j I N-1 , 

0 xJIj, 

so that fj = hj . Now inserting y* into (2.1), multiplying both sides by 
pj /hj, and integrating leads to 

(2.4) (D2Y*)j + hf(x, y*(x))(Pjdx =O, j= 1, ..., N-I, 
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where Y* is the mesh function with values y*(xj) and 

(D2Y)_ (Yj - Yj-)/hj_1 - (Yj+l - Yj)lh 

The whole of this paper is concerned with obtaining difference equations of 
increasing accuracy for (2.1) by using weighted quadrature rules of increasing 
order to approximate the integral in (2.4). Of course, these quadrature rules are 
only allowed to use information based on the mesh values YJ*->, Y* and Yj>+ . 

The simplest quadrature rule is perhaps the "generalized weighted midpoint" 
rule, i.e., 

L z(t)po dt- z(6), 

where 0 E (-1, 1) and 

(t (t + IWO( + 1), t E [-I1, 0], 
t (I - t)/(l - 0), t E [0, 1], 

derived by integrating the constant polynomial which interpolates z at t = 6 
exactly against (o . The error in this integration method is given by 

26 
||z(t)p dt - z(H) + 3Z() / < Co max{Ijz"(t)I}. 

Hence, applying this quadrature rule, by a change-of-variable, to the integrals 
in (2.4) leads to the difference equation 

(2.5) (D2Y) + f(x,Y= )O, j = 1, ...,N-1, 

with Yo = YN = 0, and the local truncation error 

= jf(x,y(x))jdx-f(xj, Y*) 

satisfies 

Tj+ 2hjOjy*///(xj) < CohjjIy*(iv)11Ib 

where 11 IIA denotes the maximum norm over an interval A. Hence, although 
ITjOI = 0(hj) in general, 

| Eh?i HY *"'(xi ) |< 6{2 max{ lP+IlY*//II, 

+(b-a)max{hj2 Ily*(iv)llj, 4 

and thus IITOIl-1 (where this norm is defined in (2.6)) is second order in terms 
of the size of the local mesh and local derivatives. It can then be shown that, 
providing the local mesh size mirrors sufficiently closely the behavior of y* (x), 
there is a unique solution of (2.5) near Y*. We state the following results 
without proof: 

(i) if 

K max {(b-a)h-_[[jqjjs; + lq'llj 1]}< 
j=1I-,N b2 II~J 
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then the linear difference equation 

(D2 y)j + q*(xj)Yj = ,Sj, j = 1, ... N-1, 
with Yo = YN = 0 has a unique solution Z for each ,B and 

||Z|| 1-< 2KIl|4||-1, 

where 
IIZIII=- max N{I(Zji-Zjl)/hj I}, 

(2.6) N-l{Zifi}; 

(ii) if 

(b - a)22Kado < ? 

where do 4KIIToII- , a locally unique solution YO of (2.5) exists in B(Y*, do) 
[the closed ball of radius do in 1I11 centered on Y*], and the linear difference 
equation 

(LO Y)j =_ (D2Y)j + Lf (xj, Y0)Y- =flj_ j = I N - I h a~~~y J 

with Yo = YN = 0 has a unique solution Z for each ,B with 

lIZ Iii < KoIIflIl-1i, 
where KO 4K. 

A more accurate difference scheme is obtained by using the "generalized 
weighted Simpson" rule to approximate the integral in (2.4), i.e., 

z(t)epo dt ,a(0)z(l) + f(0)z(0) + a(-6)z(- 1), 

where 
____4___ 2__0 5 -02 

12( - 0) 6(1- 02)' 

derived by integrating the quadratic polynomial which interpolates z at t = 
i 1, 0 exactly against (o . The error in this integration method is given by 

z(t)epo dt - {a(H)z(1) +,f(0)z(0) + a(-0)z(-1)} - (2190+ Z3)zI/(0) 

< Ci max{ Iz(iv)(t)I }- 

Hence, applying this quadrature rule, by a change-of-variable, to the integrals 
in (2.4) leads to the difference equation 

(2.7) (D2Y)j+oa(0j)f(xj+1, Yj+1)+f1(0j)f(xj, Yj)+ak(-Oj)f(xj-l, Yj_j) = 0 

with Yo = YN = 0. We shall use this equation to obtain a fourth-order accurate 
mesh function in the next section. Here we merely point out that the truncation 
error T1, defined by 

T - x h f(xx y*(x))j dx 

- {a(0j)f(xj+i, Yj;l ) + f1(0j)f(xj, Yj*) + a(-0j)f(xj_j, Yj*1)}, 
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satisfies 
3(216j1+OJ 

T} - J iY*(v)(x0) < Cl hI jy*(vi) jI' 

and thus, in general, we only have ITJ I T 0(h3). Moreover, it is not true that 

I1lr1 I= 0(h4) for arbitrary meshes [20]. If, however, our meshes satisfy 
a supraconvergence condition [20, 23], it is possible to show that IIT Il-I is 
fourth-order accurate. For our purposes we define this condition as follows. 

Supraconvergent mesh condition. There are real constants, U, C and an integer 
constant N such that all meshes satisfy 

(i) l6?l < U < I 

and at least one of 

N-1 

(QUANTITATIVE) (ii) Z 6I < C 
j=1 

(QUALITATIVE) (iii) 6j changes sign no more than N times. 

Hence, if (ii) holds, we can deduce that 

ZE h4 (2loi go1) y*(V)(xi) < -Cmax{h4 ly,jji}, 0 90 y 45 1 - 

while, on the other hand, if (iii) holds, then 

3~) 
| 4,210i H+ Oi ) *(v) (Xi)| 

11(N+ 1) [2max{h4 4Ily*(v)II .}+(b -a)max{hI y lly*(vi) III. 

In either case, IITl- is fourth-order accurate in terms of the local mesh size 
and local derivatives. The significance of the quantitative/qualitative assump- 
tions is that either implies 

N-1 

(2.8) E hlOjl = 0(h), 
j=1 

and this ensures the supraconvergence. 
Note that this mesh condition will be satisfied by all practical meshes. (Part 

(i) will be required later for higher-order methods and to justify the defect 
correction procedure.) It can be seen that this gain in accuracy, i.e., smaller 

1 11-I than II . l, where the latter is just the simple maximum of the moduli 
of the components, will occur whenever the leading error term is a polynomial 
in 0 which is zero at 0 = 0. More generally, it will also occur when the leading 
error term is a function g(0) which satisfies Ig(0) I < Cj 61. This result will be 
used repeatedly later for our higher-order approximations. 
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3. FOURTH-ORDER ACCURACY BY DEFECT CORRECTION 

We will compute a fourth-order approximation Yl to Y* which satisfies 

(3.1 ) (D2Y )1 +- a(j)f(xX+l, y. l ) + fl(6j)(xj, Yl) 
+ a(-6i)f(Xj-I) YJL-l) = 0) j = l, ... N-1, 

with Yol = YN = 0. Its existence, local uniqueness and construction is based 
on the fixed point equation 

(3.2) Z =,WI(Z), 

where 
WI (Z )I J - jWi 

with W satisfying 

(LOW)j = (D2Z)j + ak(6j)f(xj+I, Zj+1) + fl(61)f(x1, Z1) 

+oa(-ftj)f(xj_I, Zj-1), j= 1, ..., N- 1, 

and Wo = WN = 0. We will show next that WI , for sufficiently small h, is a 
contraction mapping in B(YO, dl), the closed ball of radius 

di _ 2(11(Y*) - Y*jj1 + 11YO - Y*ljj) 

in Iii centered on YO. [Note that (LO[Wl (Y*) - Y*]) =T, and so d, just 
depends on IT Il-1 and ITOIi .1 Hence, the defect correction iteration 

(3.3) z (m+ 1) = g, (Z (m)) ) 

starting from Z(0) = Y?, will converge to a locally unique Y I. 
If U, V E B(Y?, di), then 

(3.4) (LO [,Li (U) -,j (V)])j = 30J -AOj h ~~J J 

where 
(i) 

6? a a(0j) [f(xj+ 1, Uj+l ) - f(xj+, 1Vj+l )] 

+ =c(61)[fl(x1i, U1) - f(xj1, Vj ) 
+ a(- 0j) f(xj- I uj_ 0 - f(xj_l Ivj- 0] 

- [f(xj, Uj) - f(x1, Vj)], 

and 
(ii) 

AO?- f(xj, Ui) - f(xj, Vi) - 0af (xj Yj?)[Uj - vy]. 

Here, 30 is the key term in our analysis of defect correction. It compares the 
difference in the higher-order formula at U and V with the difference in the 
basic formula at these two mesh functions. This depends on the smoothness of 
the difference U - V. In the present case we have 

30i? = - {( - 56j2)[(DE)j+1 - 
(DE)j_j] ~' 12(1 - 0+) 

-(36j + 6])[(DE)j1~ + (Ej1J 
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where Ej f(xj, Uj) - f(xj, Vj) and (DY)j _ (Yj - Yj11)/hhj Writing 
this as 

o= [(DE)j+1 +-(DE)j_j+] 

_ {46j2[(DE)j+ (DE)j 

+ (30j + oj3)[(DE)j+1 + (DE)j_]}, 

we see that the 6j factors will ensure supraconvergence for the latter term. 
Summing the former, however, gives 

J 

Z E 
2 

[(DE)i+1 - (DE)i-1| 

hi2 J~ h2 - h ~ 
-|_hi(DE)+ +E Z 12 (DE)i_1 + (D j+1 

(6 3 ) 
Consequently, on a supraconvergent mesh we have 

116011-1 < const(-U, -C, X)h2IJEJII, 

and thus 
11 3I -Il < const( U, C, N)h2 I IU - Vi1 . 

We emphasize that this constant only depends on the supraconvergence prop- 
erties of the mesh. The other term in (3.4), AO, is just a simple linearization 
error and satisfies 

II) lblo < a(b - a)dl 11 U - Vllo. 
Consequently, WI is a contraction on B(Y?, dl) for sufficiently small h and 
d1, and we may assume that the contraction constant yi < 1/4. 

In addition, Wj maps B(Y?, dl) onto itself since Z E B(Y?, dl) implies 

jjWl(Z) - YOjji ' jjffl1(Z) - WI (Y*)1 I + jjIWl (Y*) - Y*1 I + iiY* - y0jj1 

Hence, our conclusion is that the defect correction iteration (3.3) converges 
to the locally unique Yl satisfying (3.1) and that, as usual, 

y = y* -,I (Y*) +,I (Y*) - yl 

implies 

(3.5) iiY1 - Y*1 < K0 1ITllI 

We underline the important fact that the global mesh size h only appears in the 
contraction constant yi , while the error y- - Y* just depends on the product 
of local mesh size and local solution derivative size. 

4. FUNCTION VALUES FOR HIGHER-ORDER QUADRATURE 

We wish to approximate the integral in (2.4) more accurately than is possible 
with the generalized weighted Simpson rule, but still only using the mesh values 
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yJ*-1 Y andJ+1 To do this, we must make use of the differential equation 
(2.1), which y* satisfies, in order to generate accurate approximations to y* 
at other points besides xj-1, xj and xj+l . This is exactly what Runge-Kutta 
methods do for first-order systems. The values of y*", at xj-1, xj and xj+l, 
i.e., f(xj-l, A Yj* ) f(xj, Y*) and f(xj+i, YJ*+1), are immediately available 
and naively one would suppose that it would be possible to fit a quintic poly- 
nomial to these six pieces of data and thus obtain an 0(h?) approximation to 
y* on Ij. It is, however, easily checked that for 6j = 0, i.e., hj+j = hi_l 
the data is incompatible in general. Hence, we shall define P2(Yj*; x) to be the 
quartic polynomial which satisfies 

(4.1) (i) P2(Y*;Xi)=Y.* i=j-l,j+l, 
(ii) P2',(Y;; xi) =f(xi, Yi*)) i = j - 1, j, j + 1, 

i.e., we are no longer trying to collocate with y* at xj. In general, of course, 
P2(Y;; x) can only be an 0(h)) approximation to y* on Ij, but we shall make 
use of the supraconvergence property to obtain 0(h6) in a negative norm, which 
has proved to be an important tool in the analysis of supraconvergence [26]. 

To obtain more accurate approximations to y*, we generate higher-degree 
polynomials inductively. In particular, for k = 3, 4, 5, ..., we define 
Pk(Y1; x) to be the (2k)th-degree polynomial which satisfies 

(4.2) (i Pk (Y;*; xi) =Yj* i =j-1,) j+ 1, 

(ii) P'k (Yj; ;Xjl) =f (Xjl ,Pk-l(Yj; ;Xjl)), O 1=0 ,I . .. , ?(k - 1)) 
where 

(4.3) xjl {1 <0 2 

Although Pk(Yj7; x) will be only an 0(h2k+l ) approximation to y*(x) on Ij in 
general, the following lemma shows that the leading error term has an important 
property. 

Lemma 1. For x E Ij we have 

k 
y*(x)-~Pk(Y; ; x) - 

hj2k [f~Y(xj y*)]k-py*(2p+l)(x1) 
(4.4) p=2 

Pk,p (0i; h X + 61) + o(hJk+), 

where 
(i) Pk, k (; t) is a polynomial of degree 2k + 1 in t with coefficients that are 

polynomials in 0 and Pk, k (0; t) is odd, 
(ii) Pk,i(O; t), i = 2, ... , k - 1, are polynomials of degree 2k in t with 

coefficients that are rational in 0 (the divisors being powers of m- 0 for nonzero 
integers m) and Pk,i(O; t), i = 2, ...,k - 1, are odd. 
Proof. First consider P2 so that 

Y*(X) -P2(y*; X) = h5p22 O(j; X,x + j Y* + 0(h) 
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where P2,2(0; t) is a quintic polynomial in t with zeros at +1 and whose 
second derivative is zero at 0 and ? 1 . Hence, 

P2'1 2(0; t) - const(t2 _ 1)(t - 0) 

and so is odd for 0 = 0, and this property is inherited by P2,2(0; t). 
For k > 3 we argue by induction. Thus suppose the lemma is true for 

y* (x) - Pk- (Yj* ; x) . Then 

y*(X) -Pk(Yj* ; X) = y* (X) - qk(yj*; X) + qk(yj*; X) -Pk(yj; X), 

where qk (Yj ; x) is the (2k)th-degree polynomial which satisfies 

(i) qk (yj ;Xi) =Yi , i=j -1, j +1, 

(ii) qk(Yj*; X1l) = y*I(X1l) =0, ?1,***, ?(k- 1). 

Consequently, for x e Ij, 

y*(x) - q(Yj*; X) = h2k+IPkk (0x; Xi + oj) y*(2k+)(Xj) + 0(h ) 

where Pk, k (0; t) is a (2k + 1)th-degree polynomial in t with zeros at ? I and 
whose second derivative has zeros at t(01j), I = 0, 1, ...?, (k - 1), where 

(4.5) t (0) --k/1 +0 (1 - l ) 

Hence, 
k-i 

Pk,k(O; t) =- const rj (t - ti(0)) 
I=-(k-1) 

and so is odd for 0 = 0, and this property is inherited by Pk, k (; t). 
Now consider the qk (yj*; X) - Pk (yj; X) term, which is the (2k)th-degree 

polynomial with zeros at xj?I and whose second derivative satisfies 

qk (yj*; Xl) -Pk(Yj*; Xjl) = f(xjl, y* (X)) - f(Xl, Pk-I(Yj; Xjl)) 

I =0 O,?1, ..., ?(k-1) 

and thus is zero at xj1l. By the induction hypothesis, 

qk (Yj; x) -Pk"(Yj*; x) 

(k-2) rk-I 

= k-l I E < [fy(xj 
y*)]k-Py*(2P+l)(Xj)Pklp(0j; 

hJk (k-2) k-ij tl(0j))} 
l=-(k-2) p=2 

1*,I l 0j; 
X - 

J+ Oj) + 0(02) 

where the lk I(0; t) are the Lagrange polynomials for the 2k - 1 points t1(0), 
i.e., 

k-i 

(4.6) lk,1"0; t)- (t -ti (0)) /(ti(0) -ti (0))- 
i=-(k- 1) 

i$l 
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Hence, the induction will be complete if we can show that 

Pk,,(O; t)-Pk-l,,(O; to(O))lk,0(0; t) 
k-2 

+ ,Pk-l ,p(O; t1 (0))1k , l (0; t) + Pk-l ,p(O; t_1(0))lk , _1(0; t) 
1=1 

is odd when 0 = 0. Since it is easily checked that 

Pk-l ,p(O; t_1(0)) = -Pk-1 ,p(0; t1(O)), 

through Pk-1,,p(O; t) being odd and t_1(O) = -t1(O), and 

i#2 

we are finished. O 

We shall also require these polynomials evaluated at other mesh functions 
near Y* , and so we use the obvious definition for Pk(Yj; x), j = 1, ..., N; 
k = 2, 3, 4, ... . The following lemma shows how Pk(Yj*; x) -Pk(Yi; x) and 
its derivatives are bounded in terms of the mesh function Y* - Y. 

Lemma 2. There holds 

(i) IIk ( -k (j;*)li< k ll Y - Yllo, 

(4.7) (ii) Ilp)(Yj*; *) -p(Yj; )IlI < 21IY*_Y11 + 
h 

YIHIo k k ~~~~~~~~~~..HkIIy* - YIIo' 
(iii) IlPk(1&*; ) - Pk(Y1; )llIj < (1 + Hkh1/6)IY* - Yllo, 

where H2- a L2(0j) and Hk+1 I aLk(0i)( l + Hkhj /6), k > 2, with Lk(0j) 
being the norm of the Lagrange interpolation operator on [-1, 1] for the 2k - 1 
points t, (0j), 1 =, + 1, .. ., +(k - 1). 

Proof. A simple induction based on 

Ilp"(Yj*; *)-p" (Yj; )IlI <Lk(6j)aIllPk-l(Yj*; *)-Pk-l(Yi; *)IlIj' * 

We have not emphasized the point, but note that the bounds in (4.7) are just 
in terms of Y* - Y at points j - 1, j, j + 1. 

5. HIGHER-ORDER ACCURACY BY DEFECT CORRECTION 

We compute a sequence { yk }, k = 2, 3, 4, ... , of mesh functions which 
will be shown to be (2k + 2)th-order approximations to Y*. Their defining 
equations are 

(5.1 ) WD2yk ) j + Qjk(0;) I fX (x Pk (Yk; ;x)) = O, j = , N- 

with yok = yk = 0. Here, Qk(0) is the weighted Gauss-Lobatto rule with k 
interior points for approximating 

z(t)po dt 
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and, by a change-of-variable, Qj5(0) {f(X, Pk(Zi; x))} approximates 

I 
f (X 0 Pk (Zi; x))f j dx. 

Hence, Qk integrates (2k + l)th-degree polynomials exactly, and Qk is 
O(h0k+2) accurate for sufficiently smooth integrands. Existence, local unique- 
ness and construction of yk is based on the fixed point equation 

(5.2) =k(Z) 

where 
[9k(Z)]j-Zi Wi 

with W satisfying 

(LO W)j = (D2Z)j + Qt (60i){f(x, Pk(Zi; X))}, j= , ... , N-1, 

and Wo = WN = 0. We will show that fk, for sufficiently small h, is a 
contraction mapping on B(yk-1, dk), where 

dk -2(k(Y*) - Y* 11 + 1 yk-1 - y* 11) 

and hence that the defect correction iteration 

(5.3) Z(m+l ) = -?k (Z(m)) 

starting from Z(0) = yk-l, will converge to a locally unique yk . First, how- 
ever, we analyze k (Y*) - Y*, i.e., the accuracy of the higher-order methods. 

Note that 

(5.4) (LO[Vk(Y*) - y*])j = +k +k 

where 

(i) Tik - f (x, y*(x)) ( j dx -Q (0j){ f(X, y*(x))l} 

(ii) 7tk=_Qjk(fj){ff(X, y*(X))-f (X 9Pk(yj*;X))} r 

We consider these two terms separately. 
(a) The first, Tk, as in the defect correction error analysis for Yl, is just a 

quadrature error. By our choice of Qk(0) we have 

lk< k2k+211y*(2k+2)11, JTk I < Ckh. jy~II1 

(b) The second term, 7rk, was not present in the defect correction error 
analysis for Yl and appears here because, for k > 2, we need to use the 
polynomials Pk to generate extra approximations for the quadrature. Using 
Lemma 1, we may write 

k 
I 

_2k+l Z[fY(Xj y*)]k-p+ly*(2P+l)(xi)Qk(O1) 
p=2 

{Pk,p (ci; 
X X + Oj) + 0(h 
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and so the key terms are 

Qj(0j) {Pk,p( hj +Oj) Pk,p(j; t)pojdt, p = 2, ...,k. 

However, Pk,p(O; t) is an odd polynomial. In addition, the formula 

L i 1 ~~~+ ( 1)m+2 + 6[1 I ()m+2I - 20m+2 

1 
d (m+1)(m+2)(1-02) 

shows that integrating an odd polynomial in t against 9 gives an odd poly- 
nomial in 0. Hence, 

g(o) -|Pk,p(t; t)podt 

is a rational function of 0 with g(O) = 0, and this ensures that 

( 2k+2 

117kjj_1 = constk((a, U, C, N)max hJ2k+2 E IlY*(P)IIij 

Hence, d2 just depends on 11T211-i, II211-1 and liX1 1 1i; and we shall show by 
induction that, for k > 2, dk only depends on l TkIl _, 11tk1_1, ll Tk 1- and 

k - 1 11 
Now we will show that fk , for sufficiently small h, is a contraction mapping 

on B(yk 1, dk). If U, V E B(Yk I, dk), then 

(5.5) -(L [k (U)- flk (V)])j = _k-_ - 

where 

(i) bj3 _ Q(j){ff(x, Pk(Uj;X))-f(X,Pk(Vj;X))} 

- [f(x, Uj) - f(x, Vj)], 

(ii) -f(x1, U1) - f(x;, Vj) (Xj Y0)[U1 - Vi] 

We consider these two terms separately. 
(a) The first, bk- , as in the case of Y' , is the key term in the defect 

correction error analysis and relies on the smoothness of U - V. Since Qk(0) 
integrates linear functions exactly against , we may write 

= Qj(){ff(x, Pk(Uj; X))-f(x, Pk(Vj; x))-el(x)} 

+ {hj+ (DE)j+ -hj E(DE)j_} 

+06{jh+P(DE)j+ +h-E(DE)j},j 

where ek is the linear polynomial interpolating 

f(X,Pk( U1; X)) -f(X,Pk(ViJ; X)) 

at xj?1 and Ej f(x;, Uj) - f(xj, Vj) . The first term on the right-hand side 
will be O(hJ Uj - Vj Iii) if we use standard interpolation theory, Lemma 2 and 
the conditions on f given by (2.2). [Note that it is only here that Lipschitz 
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continuity of the second derivatives of f is needed; cf. ?6.] The other two 
terms we write as 

hj [(DE)j+- (DE)j_j] 

-hj [(DE)j+ (DE)j + i [( DE j+ + (DE)4ji]} 

The Oj factors will ensure supraconvergence of the latter term, while for the 
former we have 

E [(DE) i+ (DE)i_11] 

2 2 ( ) 2 ( - 2( )+ 

N-1 \ D) -J D)+ 

< h2 +2h E hiJ0il IJEIi11* 
i=l 

Consequently, on a supraconvergent mesh we have 

llk l_I < const(U U, C, R )h2 

and thus 
jbk-1j_1 < aconst(U, C, N)h2jjU V . 

We emphasize, again that this constant only depends on the supraconvergence 
properties of the mesh. 

(b) As before, iAk-1 iS just a simple linearization error satisfying 

Ilk- 1 llo < ca(b - a)dl 11 U - V110- 

Hence Wk, for sufficiently small h and dk, is a contraction on B(yk-l, dk), 
and we may assume that the contraction constant Yk < - 

In addition, fk maps B(yk-l, dk) onto itself since Z E B(Yk-l, dk) im- 
plies 

llSk(Z) - ykl111 < llWk(Z) -_,Wk(y*)11 + 1?k(Y) - y*111 + IIY -yk 111- 

So our final conclusion is that the sequence of defect correction iterations 
(5.3) converges to locally unique {yk} satisfying (5.1) and that, as usual, 

y* _yk = y* _,Wk(y*) + (y*)yk 

implies 

(5.6) iyk - y*11 < Y k_ (llTk1l1_ + 11xrklK_). 

We finish by repeating the crucial fact that the global mesh size h only appears 
in the contraction constants {Yk}, while the errors { yk - Y* } just depend on 
the product of local mesh size and local derivative size. 

6. GENERALIZATION AND VARIATIONS 

(a) Systems of differential equations. For simplicity we have described the 
application of defect correction to a single second-order differential equation, 
but there is no difficulty in extending our results to systems. 
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(b) Derivative boundary conditions. Although we are specifically considering 
second-order differential equations without a first derivative term, there is no 
difficulty in catering for a derivative in the boundary conditions. These may be 
imposed variationally in the usual finite element way. For example, if 

n (x) { 
0 

)h x E I, 

then integrating (1) against 90O gives 

yI (o) - Y*(X) y*(x) - Jf(x, y (x)) f o dx, 

and this expression can replace y*'(0) in any boundary condition. Of course, 
the integral must be approximated by increasingly accurate weighted quadrature 
rules, this time with weight 0o, using only YO*, Y,* and the differential equation. 

(c) Alternatives to Pk. There is a natural alternative to our definition of Pk 
in ?4, which should be somewhat more accurate. We define fi2(Yj*; x) to be 
the continuous piecewise quartic polynomial which satisfies 

(6.l1 a) (i) P2(yj*;xi)=Y* i=j-1,j, 
(ii) P (Yj*; xi) =f(xi, Yi*), i= 1,j,j+ 1, 

for x E Ij_, and 

(6. 1 b) ~~(i) P2(yj*; Xi) =Yi, =j,j+ 1, 

(ii) I3 (Yj* ;xi)=f(xi, Yi*), i=j 1,j,j+ 1, 

for x E Ij+ Similarly, for k = 3, 4, 5, ... we define Pk(Yj*; x) inductively 
to be the continuous piecewise (2k)th-degree polynomial which satisfies 
(6.2a) 

(i) Pk(Yj;i= , . i=-1, j, 

(ii) Pk (YJ*;Xjl)=f(Xil,P'k-l(yj*;xjl)), I=O,?I1,... , (k -1), 

for x E Ij_+, and 
(6.2b) 

(i) Ak(Yj ; Xi)= Yi* ,ij, j + 1, 

(ii) Pk (Yj; Xjl) =f (Xjl, Pk-l (yj*; Xjl))) I = O, I, ... ., ?(k -1) 

for x E Ij+1 , where xjl is defined in (4.3). 
It is easy to develop analogues of Lemmas 1 and 2 for the Pk, but a complete 

defect correction error analysis is complicated by their piecewise polynomial 
nature. It is, however, expected to hold and the numerical results in ?7 provide 
verification. 

We further note that it is possible to vary the xjl in the definition of Pk and 
Pk, always enforcing the condition that they are symmetric with respect to the 
center of Ij when Oj = 0. The appearance of norms of Lagrange interpolation 
operators in the proof of Lemma 2 indicates that an analogue of Chebyshev 
points would be advantageous, but this has yet to be investigated. 
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(d) Alternative Qk(Q) . There is no special reason for our choice of weighted 
Gauss-Lobatto quadrature, apart from the fact that it provides the highest ac- 
curacy with the minimum number of function evaluations. If the P5k piecewise 
polynomials are used, so that f(xj, 3(Yj; xj)) - f(x , Yj) is an extra free 
integrand value, there are other possibilities which use an equal number or 
sometimes even fewer function evaluations. 

(i) For odd k we look at a generalization of the k = 1 approach. Thus, we 
require a "generalized" weighted Gauss-Lobatto rule with k interior points, one 
of which is fixed at xj . For Oj = 0, these are ordinary weighted Gauss-Lobatto 
rules and integrate (2k + 1)th-degree polynomials exactly. For 0 $A 0 the 
schemes will only have abscissae in (-1, 1) for 1I1 sufficiently small (bounds 
given in the table below), and the supraconvergence property must be relied on 
to obtain the required accuracy, as with k = 1 . 

k 1 3 5 
1j1 < 1 .27 .16 

Note that one integrand evaluation is saved, compared with the weighted Gauss- 
Lobatto rules. 

(ii) For even k we may look at a generalization of the k = 0 approach, i.e., 
"generalized" weighted Gauss rules with one point fixed at xj . For Oj = 0 these 
are ordinary weighted Gauss rules and integrate (2k + 1 )th-degree polynomials 
exactly. For 6 $A 0 the schemes will only have abscissae in (-1, 1) for 1I1 
sufficiently small (bounds given in the table below), and the supraconvergence 
property must again be relied on to achieve the required accuracy, as with k = 

0. 

k k| 2 4 
101 < 1 .30 .17 

Note that these schemes use the same number of extra integrand evaluations as 
the weighted Gauss-Lobatto rules. 

(e) Alternative k = 0 formulae. There is no difficulty in using a different 
difference equation as the basic second-order accurate method on which our 
defect correction procedure relies. Those derived by integrating linear func- 
tions (weighted trapezoidal rule) or continuous piecewise linear functions ex- 
actly against (Dj are respectively: 

(i) (D2Y)j + I+ 6) f(x1+1, Y1+1)+ I- 6) f(x_i, Yj-0) =?0 
6~ 2 1+ 

(ii) (D2Y)1+ 6 f(xj+l, Yj+1)+ Af(xj, Y1)+ +6 f(x11, Y11)=O. 

It is easily checked that the defect correction analysis in ?5 still carries through. 
More interesting is the choice of the fourth-order accurate method (2.7) as 

our basic k 0 formula. Our new LO will still only involve the solution of a 
tridiagonal system, so this is a serious possibility. It is straightforward to adapt 
the theory to show that a similar improvement of 0(h2) per correction is still 
achieved, and this is verified numerically in the next section. 
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7. NUMERICAL RESULTS 

In this section we present some numerical results for the integration of two 
challenging second-order equations. The particular problems we consider are: 
(l) e2y1 = y - x, 0 < X < y(0)= 1, y(l) =2, 

which has the solution 

e(x-l)/8 e-xle - e-(x+')Ic 
y(X) = X + + e-iie+ le-21/ 

For small positive E, this solution has a boundary layer at both ends of the 
integration range and is smooth away from these layer regions. For the purpose 
of our numerical experiments we take e = 10-2. 

(2) y" =usinh,uy, 0<x 1, y(0)=0, y(l)= 1. 

This is a very well-known problem due to Troesch. This equation does not have 
an analytic solution and becomes increasingly more difficult to solve numerically 
as the parameter ,u increases. In particular, it presents a very difficult problem 
for ,u = 20, owing to the presence of a sharp boundary layer at x = 1. 

For both of these examples, the behavior of the solution varies significantly 
over the interval of x, and so it makes good sense to use a nonuniform grid. 
The purpose of using such a grid is two-fold. First, by concentrating grid points 
in regions where the solution is varying rapidly (and putting relatively few grid 
points in smooth regions) we hope to achieve good accuracy using relatively few 
grid points, certainly less than if a uniform grid were to be used. Secondly, for 
nonlinear problems, we expect that a nonuniform grid will facilitate the con- 
vergence of the Newton iteration scheme used to solve the nonlinear algebraic 
equations which define the numerical solution. 

The deferred correction algorithm on which we base our integration scheme 
is 

V4(71) 0, 

V4(7) = -(6(71), 

(04(7) = (04(1) - I08(71), 

where V.i denotes a formula which is of order i on a uniform grid. It is not dif- 
ficult to derive these formulae explicitly using the theory presented in previous 
sections, and they are available from the authors on request. The precise way in 
which these formulae are used in a deferred correction framework is described 
in [6]. Although our theory applies to very general meshes, we simplify our 
implementation by allowing only mesh halving/doubling. This corresponds to 
the case 0 = 0 or ? I1/3 in ?2. It is straightforward to store quadratuire formu- 
lae for these three cases and also to store coefficients which generate Pk(Y1; *) 
from Pk1(Yj; I ). However, in future work we wish to examine the possibility 
of using more general meshes in our numerical implementation. 

In a practical algorithm it would be necessary to derive an automatic mesh 
selection procedure. However, this has proved to be difficult and is certainly 
beyond the scope of the present paper. In deriving our numerical results, we 
have used a somewhat crude method for deriving an adaptive grid. As in the case 
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of the deferred correction algorithm described in [5, 6], we seek to choose the 
grid so as to equidistribute the eighth-order deferred correction 1j4(4) - I8(}) I 
However, in the second-order case considered in this paper we have imposed 
the constraint that successive grid spacings should be in the ratio 1: 1, 1: 2 or 
2: 1. Although this does simplify the mesh selection process, it is still nontrivial 
to satisfy this constraint. In deriving our numerical results, what we actually did 
was as follows. Given an initial grid, we used our deferred correction program 
to compute 4th, 6th and 8th-order numerical solutions and to derive the eighth- 
order deferred correction o4( ) - 0D8(Q) associated with each mesh. If the error 
criterion was not satisfied, we worked out a new grid by hand on the basis 
of approximately equidistributing the eighth-order deferred correction, fed this 
new grid into our deferred correction algorithm and computed one more loop 
of the iteration. This process was continued until either the required accuracy 
was obtained or more than a maximum number of grid points was used. 

Using the procedure just described, we solved problem (1) with a requested 
absolute accuracy of 10-10. We ended up solving this problem on a nonuniform 
grid of 146 points, of which 51 were in [0, 0.1] and 47 in [0.9, 1]. On this 
mesh, the maximum errors in t, i7 and 1 were .203 x 10-5, .553 x 10-8 and 
.551 x 10-10, respectively. On an equally spaced grid we found that about 
500 points were needed to obtain the same accuracy. Finally, we halved the 
nonuniform grid to obtain a grid with 291 points to see how these maximum 
errors behaved. On this new halved grid, the maximum errors in ?I, and 1 
were .129 x 10-6, .877 x 10-10 and .169 x 10-12, with the ratio between the 
new and old maximum errors being 15.7, 63 and 311, respectively. 

For problem (2) the situation is more complicated. Not only do we need to 
choose an adaptive grid to satisfy the accuracy requirements, but we also need 
to ensure that the Newton iteration scheme used to solve for the numerical 
solution will converge. So, as not to introduce additional complications, we 
used a straightforward (undamped) Newton scheme with initial approximation 
y = 0. In what follows, we describe the solution of problem (2) with an accuracy 
requirement of 10-8. We started with ,u = 2 and 10 equally spaced grid points, 
and performed continuation in Iu with increments of 2 to get a reasonable grid 
for ,u = 20. This process produced a grid of 59 points with 46 of these being 
in [0.9, 1]. We solved problem (2) on this grid (using Newton with initial 
guess y = 0) and found that the maximum errors in r, # and =n were .287 x 
i0-5, .368 x i0- and .700 x 10-8. Halving this grid, we found the maximum 
errors to be .190 x 10-6, .628 x 10-9, .290 x 10-10, with the respective ratios 
being 15.1, 59, 276. Finally, we attempted to solve problem (2) using our 
deferred correction scheme on a uniform grid. However, we found that we 
were-unable to obtain convergence of the Newton iteration scheme, even with 
a grid of 2000 points. 
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